Fan Yang

B
148 Beckman Behavioral Biology, 1200 E California Blvd Pasadena, CA 91125

+1~(609)933-2065 \diamond fy2@caltech.edu

Website: https://fy26.github.io

Google Scholar: https://scholar.google.com/citations?user=DGkWTvIAAAAJ&hl=en

EDUCATION AND TRAINING

Post-doctoral Scholar in Biology and Biological Engineering,

California Institute of Technology

Supervisor: Prof. Matt Thomson

PhD in Department of Mechanical and Aerospace Engineering,

Princeton University

Supervisor: Prof. Howard A. Stone

Thesis: Interfacial Flows in Active Matter and Energy Processes

Bachelor of Engineering in Mechanical Engineering,

Tsinghua University

2021 - Present
Pasadena, CA

2015 - 2021
Princeton, NJ

Supervisor: Prof. Howard A. Stone
Thesis: Interfacial Flows in Active Matter and Energy Processes

Bachelor of Engineering in Mechanical Engineering,

Beijing, China

GPA: 92.2/100 Ranking: 1st/84

Thesis: Numerical Simulations of Continuous Casting with Electromagnetic Stirring

PUBLICATIONS

- 1. **F. Yang**, S. Liu, H. J. Lee, R. Phillips and M. Thomson. Dynamic Flow Control Through Active Matter Programming Language. *Nature Materials*, 24, 615-625, 2025.
 - ★ Nature Materials News & Views: "Illuminating active matter by harnessing light for modular flow control".
 - ★ Nature Chemical Engineering Research Highlight: "Programming fluid flow with biological active matter".
 - ★ Caltech News: "First Programming Language for Active Material".
- 2. **F. Yang**, S. Liu, H. Wang, H. J. Lee, R. Phillips and M. Thomson. Geometry-Dependent Defect Merging Induces Bifurcated Dynamics in Active Networks. *Physical Review Research*, 7, L042006, 2025.
- 3. S. Liu, R. W. Pan, H. J. Lee, S. Shadkhoo, **F. Yang**, C. Li, Z. Qu, R. Phillips and M. Thomson. Force Propagation in Active Cytoskeletal Networks. arXiv:2401.04217. 2024
- Z. Qu, D. Schildknecht, S. Shadkhoo, E. Amaya, J. Jiang, H. J. Lee, D. Larios, F. Yang, R. Phillips and M. Thomson. Persistent fluid flows defined by active matter boundaries. *Communications Physics*, 4, 198, 2021.
- 5. F. Yang. Interfacial flows in active matter and energy processes. Princeton University, 2021.
- F. Yang, A. A. Pahlavan, S. Mendez, M. Abkarian and H. A. Stone. Towards improved social distancing guidelines: space and time dependence of virus transmission from speech-driven aerosol transport between two individuals. *Physical Review Fluids (Rapid Communication)*, 5, 122501, 2020.
 - \star Selected as *Editors' Suggestion*.
- 7. A. Khodak, **F. Yang**, and H. A. Stone. Free-Surface Liquid Lithium Flow Modeling and Stability Analysis for Fusion Applications. *Journal of Fusion Energy*, 39, 455-461, 2020.

- 8. M. Abkarian, S. Mendez, N. Xue, **F. Yang**, and H. A. Stone. Speech Can Produce Jet-like Transport Relevant to Asymptomatic Spreading of Virus. *Proceedings of the National Academy of Sciences of the United States of America*, 202012156, 2020.
- 9. F. Yang, H. A. Stone, Formation, rupture, and healing of an annular viscous film, *Physical Review Letters*, 124, 224501, 2020.
- 10. T. S. Chan, **F. Yang**, A. Carlson, Directional spreading of a viscous droplet on a conical fibre, *Journal of Fluid Mechanics*, 894, A26, 2020.
- 11. B. Rallabandi, **F. Yang**, H. A. Stone, Motion of hydrodynamically interacting active particles, arXiv:1901.04311.
- 12. **F. Yang**, B. Rallabandi, H. A. Stone, Autophoresis of two adsorbing/desorbing particles in an electrolyte solution, *Journal of Fluid Mechanics*, 865, 440-459, 2019.
- 13. **F. Yang**, A. Khodak, H. A. Stone, The effects of a horizontal magnetic field on the Rayleigh-Taylor instability, *Nuclear Materials and Energy*, 18, 175-181, 2019.
- 14. F. Yang, S. Shin, H. A. Stone, Diffusiophoresis of a charged drop, *Journal of Fluid Mechanics*, 852, 37-59, 2018.

RESEARCH EXPERIENCE

California Institute of Technology

2021 - Present

Post-doctoral Scholar, Biology & Biological Engineering

Pasadena, CA

- · Developing a physics-informed ML pipeline that **infers cell velocities from static histology** and integrates them with **spatial transcriptomics of human glioblastoma** to uncover gene—motility couplings in tumor progression.
- · Led the creation of a **light-programmable microtubule**—**motor platform** that sculpts on-demand micron-scale flows for cell sorting, vesicle division and active mixing; first-author paper in *Nature Materials* (2025).
- · Discovered a **geometry-controlled bifurcation** in the active healing of cytoskeletal networks; validated continuum theory with an elastic model.

Princeton University

2015 - 2021

Graduate Research Assistant, Mechanical & Aerospace Engineering

Princeton, NJ

- · Developed theory of diffusiophoresis of charged droplets and autophoresis of interacting particles
- · Revealed universal thinning and **self-healing of annular viscous films**; published in *Physical Review Letters*.
- · Led a COVID-era study of **speech-driven aerosol transport**, generating joint space-and-time distancing guidelines.
- · Collaborated with Princeton Plasma Physics Laboratory on **magneto-hydrodynamic stability** of liquid-metal films for fusion reactors.

Tsinghua University

2013 - 2015

Undergraduate Researcher, Mechanical Engineering

Beijing, China

· Simulated electromagnetic stirring in continuous-casting processes.

TEACHING AND MENTORING

California Institute of Technology

Mentor for undergraduate Summer Undergraduate Research Fellowship (SURF): 2025 Summer

Princeton University

Assistant Instructor: MAE 305 Mathematics in Engineering,
Assistant Instructor: MAE 305 Mathematics in Engineering,
2018 Fall
Assistant Instructor: MAE 335 Fluid Dynamics,
Assistant Instructor: MAE 223 Modern Solid Mechanics
2017 Fall

PROFESSIONAL ACTIVITIES

Peer Reviewer: 2017 - Present

PNAS, Journal of Fluid Mechanics, Physical Review Fluids, Physical Review E, Nuclear Materials and Energy.

Application Reviewer:

Summer Undergraduate Research Fellowships (SURF) program, Caltech. 2022

Organizer (as a member of the organizing committee and chair of the plenary session):

9th Gotham-Metro Condensed Matter Meeting, New York University, NY. 2019

Professional Societies:

American Physical Society (APS)

American Institute of Chemical Engineers (AIChE)

FELLOWSHIPS AND AWARDS

Biology and Biological Engineering Divisional Fellowship:	Caltech, 2022–2024
Wallace Memorial Fellowship:	Princeton University, 2019
School of Engineering and Applied Science Award for Excellence:	Princeton University, 2018
Guggenheim Second Year Fellowship:	Princeton University, 2016
Sayre Award for Academic Excellence:	Princeton University, 2016
George W. Riesz '50 *52 SEAS Fellowship:	Princeton University, 2016
National Scholarship:	Tsinghua University, 2013
Sinopec Scholarship:	Tsinghua University, 2012

SEMINARS AND PRESENTATIONS

Active Healing of Microtubule-Motor Networks		
77th Annual Meeting of the APS Division of Fluid Dynamics, Salt Lake City, Utah	2024	
Dynamic Flow Control Through Active Matter Programming Language		
76th Annual Meeting of the APS Division of Fluid Dynamics, Washington, DC	2023	
Mixing and Stretching in Microfluidics with Active Matter		
74th Annual Meeting of the APS Division of Fluid Dynamics, Phoenix, AZ	2021	
The healing of a viscous annular thread and formation of an entrained bubble- fingerprints of dripping		
of a viscous film		
72nd Annual Meeting of the APS Division of Fluid Dynamics, Seattle, WA	2019	
Dripping of a Thin Viscous Film		
71st Annual Meeting of the APS Division of Fluid Dynamics, Atlanta, GA	2018	
Autophoresis of Two Particles with Surface Chemical Reactions		
70th Annual Meeting of the APS Division of Fluid Dynamics, Denver, CO	2017	
Diffusiophoresis of a Charged Drop		
91st Colloid and Surface Science Symposium, New York City, NY	2017	
Diffusiophoresis of a Charged Drop		
69th Annual Meeting of the APS Division of Fluid Dynamics, Portland, OR	2016	

REFERENCES

Dr. Matt Thomson, Caltech

mthomson@caltech.edu Pasadena, CA

Professor of Computational Biology

Dr. Howard A. Stone, Princeton University

hastone@princeton.edu Princeton, NJ

Neil A. Omenn '68 University Professor of Mechanical and Aerospace Engineering

Dr. Rob Phillips, Caltech

phillips@pboc.caltech.edu Pasadena, CA

Fred and Nancy Morris Professor of Biophysics, Biology, and Physics